Synthesis of cellular organelles containing nano-magnets stunts growth of magnetotactic bacteria.
نویسندگان
چکیده
Magnetotactic bacteria are unique prokaryotes possessing the feature of cellular organelles called magnetosomes (membrane bound 40-50 nm vesicles entrapping a magnetic nano-crystal of magnetite or greigite). The obvious energetic impact of sophisticated eukaryotic-like membrane-bound organelle assembly on a presumably simpler prokaryotic system is not addressed in literature. In this work, while presenting evidence of direct coupling of carbon source consumption to synthesis of magnetosomes, we provide the first experimentally derived estimate of energy for organelle synthesis by Magnetospirillum gryphiswaldense as approximately 5 nJoules per magnetosome. Considering our estimate of approximately 0.2 microJoules per bacterial cell as the energy required for growth, we show that the energetic load of organelle synthesis results in stunting of cell growth. We also show that removal of soluble iron or sequestration by exogenous compounds in the bacterial cell cultures reverses the impact of the excess metabolic load exerted during magnetosomal synthesis. Thus, by taking advantage of the magnetotactic bacterial system we present the first experimental evidence for the presumed energy consumption during assembly of naturally occurring sub-100 nm intra-cellular organelles.
منابع مشابه
Intracellular magneto-spatial organization of magnetic organelles inside intact bacterial cells.
Magnetotactic bacteria naturally produce magnetosomes, i.e., biological membrane bound nanomagnets, at ambient conditions. It is important to understand simultaneously the possible size variations and the magnetic behavior of nano-magnets inside intact bacterial cells for both applicational purposes as well as to enhance the basic understanding of biomineralization leading to intracellular nano...
متن کاملPositioning the Flagellum at the Center of a Dividing Cell To Combine Bacterial Division with Magnetic Polarity
UNLABELLED Faithful replication of all structural features is a sine qua non condition for the success of bacterial reproduction by binary fission. For some species, a key challenge is to replicate and organize structures with multiple polarities. Polarly flagellated magnetotactic bacteria are the prime example of organisms dealing with such a dichotomy; they have the challenge of bequeathing t...
متن کاملTethered Magnets Are the Key to Magnetotaxis: Direct Observations of Magnetospirillum magneticum AMB-1 Show that MamK Distributes Magnetosome Organelles Equally to Daughter Cells
Magnetotactic bacteria are a unique group of bacteria that synthesize a magnetic organelle termed the magnetosome, which they use to assist with their magnetic navigation in a specific type of bacterial motility called magneto-aerotaxis. Cytoskeletal filaments consisting of the actin-like protein MamK are associated with the magnetosome chain. Previously, the function of MamK was thought to be ...
متن کاملGenetics and cell biology of magnetosome formation in magnetotactic bacteria.
The ability of magnetotactic bacteria (MTB) to orient in magnetic fields is based on the synthesis of magnetosomes, which are unique prokaryotic organelles comprising membrane-enveloped, nano-sized crystals of a magnetic iron mineral that are aligned in well-ordered intracellular chains. Magnetosome crystals have species-specific morphologies, sizes, and arrangements. The magnetosome membrane, ...
متن کاملSnapping magnetosome chains by asymmetric cell division in magnetotactic bacteria.
The mechanism by which prokaryotic cells organize and segregate their intracellular organelles during cell division has recently been the subject of substantial interest. Unlike other microorganisms, magnetotactic bacteria (MTB) form internal magnets (known as magnetosome chain) for magnetic orientation, and thus face an additional challenge of dividing and equipartitioning this magnetic recept...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nanoscience and nanotechnology
دوره 10 7 شماره
صفحات -
تاریخ انتشار 2010